

Arc-Flash Hazard Assessment & Reduction

Arc-Flash Hazard

- What is it ?
- Why is it an issue now?
- Where do I need to deal with it?
- When do I have to deal with it?
- How do I go about dealing with it?

Arc-Flash Hazard. What is it?

- Flash Hazard
 - A dangerous condition associated with the release of energy caused by an electric arc.

Arc-Flash Hazard. What causes it?

- Work in close proximity to live equipment
- A mistake
- A slip
- Dust

Arc-Flash Hazard. What does it do?

- It hurts !!
- It hurts !!!
 - It injures !!!!
- It kills !!!!!

Why is it an issue?

- People are getting hurt!
 - The utility system is getting bigger
 - Higher fault current available
 - We are more aware of the causes
 - And we can do something about it

Why is it an issue now?

- It has recently been put into the Canadian Electrical Code
 - Section 2-306
 - (1) Electrical equipment such as switchboards....that are installed in other than dwelling units and are likely to require maintenance while energized <u>shall</u> be field marked to warn persons of potential electric shock and arc flash hazards.

Where do I need to deal with it?

- (1) Electrical equipment such as switchboards....that are installed in other than dwelling units and are likely to require maintenance while energized
 - Everywhere but home

When?

How many more people will get hurt.

What can I do about it?

- NFPA 70E identifies PPE, procedures and limits
- ANSI Z535.4 identifies the labels
- IEEE 1584 identifies the way to calculate the energy

What can I do about it?

- Get a study done to identify the
 - Available fault levels
 - Available incident energy
 - The required PPE
 - My options

What can I do about it?

Initial Assessment

- Gather field data
 - Motor nameplates
 - Cable sizes and lengths
 - Switchgear and MCC's data
 - Current rating
 - Voltage rating
 - Bus Bracing

Initial Assessment

- Gather field data
 - Relaying
 - CT ratios
 - Relay settings
 - Fuse Data
 - Circuit Breaker Data
 - Generator Nameplates
 - Transformer Data
 - Utility Data

System Modeling & Analysis

- Short Circuit Analysis
- Device Co-ordination
- Arc-Flash Hazard Analysis

System Modeling & Analysis

- Scenarios
 - Reduce hazards
 - Reduce costly PPE

Example

• Change the fuse type

Minimize Incident Energy

- Calculate incident energy for each bus to
 - Identify proper PPE
 - Generate Arc-Flash Warning Labels

Report

- Identify all areas of concern
- Identify recommended changes to mitigate hazards
- Identify PPE required
 - Build labels

Sample Arc-Flash Hazard Warning Label

Arc Flash and Shock Hazard

Appropriate PPE Required

- 49 inch Flash Hazard Boundary 6.23 cal/cm^2 Flash Hazard at 18 inches Cotton Underwear + FR Shirt & Pants Class 2 575 VAC Shock Hazard when cover is removed Glove Class Limited Approach 42 inch
- **Restricted Approach** 12 inch Inch

Prohibited Approach